Evolutionary analysis of polyproline motifs in Escherichia coli reveals their regulatory role in translation
نویسندگان
چکیده
Translation of consecutive prolines causes ribosome stalling, which is alleviated but cannot be fully compensated by the elongation factor P. However, the presence of polyproline motifs in about one third of the E. coli proteins underlines their potential functional importance, which remains largely unexplored. We conducted an evolutionary analysis of polyproline motifs in the proteomes of 43 E. coli strains and found evidence of evolutionary selection against translational stalling, which is especially pronounced in proteins with high translational efficiency. Against the overall trend of polyproline motif loss in evolution, we observed their enrichment in the vicinity of translational start sites, in the inter-domain regions of multi-domain proteins, and downstream of transmembrane helices. Our analysis demonstrates that the time gain caused by ribosome pausing at polyproline motifs might be advantageous in protein regions bracketing domains and transmembrane helices. Polyproline motifs might therefore be crucial for co-translational folding and membrane insertion.
منابع مشابه
Functional motifs in Escherichia coli NC101
Escherichia coli (E. coli) bacteria can damage DNA of the gut lining cells and may encourage the development of colon cancer according to recent reports. Genetic switches are specific sequence motifs and many of them are drug targets. It is interesting to know motifs and their location in sequences. At the present study, Gibbs sampler algorithm was used in order to predict and find functional m...
متن کاملMaintenance of Transcription-Translation Coupling by Elongation Factor P
UNLABELLED Under conditions of tight coupling between translation and transcription, the ribosome enables synthesis of full-length mRNAs by preventing both formation of intrinsic terminator hairpins and loading of the transcription termination factor Rho. While previous studies have focused on transcription factors, we investigated the role of Escherichia coli elongation factor P (EF-P), an elo...
متن کاملNascent peptides that block protein synthesis in bacteria.
Although the ribosome is a very general catalyst, it cannot synthesize all protein sequences equally well. For example, ribosomes stall on the secretion monitor (SecM) leader peptide to regulate expression of a downstream gene. Using a genetic selection in Escherichia coli, we identified additional nascent peptide motifs that stall ribosomes. Kinetic studies show that some nascent peptides dram...
متن کاملG-quadruplex prediction in E. coli genome reveals a conserved putative G-quadruplex-Hairpin-Duplex switch
Many studies show that short non-coding sequences are widely conserved among regulatory elements. More and more conserved sequences are being discovered since the development of next generation sequencing technology. A common approach to identify conserved sequences with regulatory roles relies on topological changes such as hairpin formation at the DNA or RNA level. G-quadruplexes, non-canonic...
متن کاملGenome-Wide Analyses and Functional Classification of Proline Repeat-Rich Proteins: Potential Role of eIF5A in Eukaryotic Evolution
The eukaryotic translation factor, eIF5A has been recently reported as a sequence-specific elongation factor that facilitates peptide bond formation at consecutive prolines in Saccharomyces cerevisiae, as its ortholog elongation factor P (EF-P) does in bacteria. We have searched the genome databases of 35 representative organisms from six kingdoms of life for PPP (Pro-Pro-Pro) and/or PPG (Pro-P...
متن کامل